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Abstract. A wide class of models, built of the three component unit vector field living in the (3+1) Minkowski
space-time, which explicitly break global O(3) symmetry are discussed. The symmetry breaking occurs
due to the so-called dielectric function multiplying a standard symmetric term. Integrability conditions are
found. Moreover, for some particular forms of the Lagrangian exact toroidal solutions with any Hopf index
are obtained. It is proved that such a symmetry breaking influences the shape of the solitons whereas the
energy as well as the Hopf index remain unchanged.

1 Introduction

Since Faddeev, Niemi [1, 2] and Cho [3] have proposed
their famous action, which is considered as a good candi-
date for an effective model describing the non-perturbative
regime of the gluodynamics, toroidal topological field con-
figurations i.e. toroidal solitons have been widely inves-
tigated [4–8]. They give a very attractive framework to
understand the physics of the glueballs – particles made
only of the gauge field. In this picture a particular glueball
can be described by a toroidal soliton with the pertinent
topological number, the so-called Hopf index [9,10]. It is the
agreement with the standard picture of the mesons, where
quarks are connected by a very thin tube of the gauge field.
Now, because of the fact that glueballs do not consist of
quarks, such a flux-tube cannot end on the sources. In or-
der to form a stable object the ends must be joined giving
loop-like configurations.

However, in spite of the fact that the Faddeev–Niemi
model gives us the chance for in a very elegant way describ-
ing the physics of glueballs, it has also its own problems.
One of the most important problems is the existence of
massless excitations, that is, Goldstone bosons which ap-
pear as the effect of the spontaneous symmetry breaking.
In fact, the Lagrangian has global O(3) symmetry whereas
the vacuum state is only O(2) invariant. Thus, two gen-
erators are broken and two bosons emerge. This feature
of the Faddeev–Niemi model has been recently discussed
and some modifications have been proposed [11–13, 15].
In general, they signify the necessity of adding new terms
to the Lagrangian, which assure the explicit O(3) symme-
try breaking.
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The main aim of the present work is to analyze toroidal
solitons in models with explicitly broken O(3) symmetry.
Such problems as the existence of knotted solitons in these
models, the influence of a symmetry breaking term on en-
ergy and shape of the knots have not been analyzed yet.
In this paper it will be shown that unbroken O(3) global
symmetry is not a necessary condition for the existence of
knots.Of course, there are infinitelymanyways inwhich the
symmetry can be broken at the Lagrangian level. Here, the
simplest case is chosen – a symmetric part of the model is
multiplied by some function, usually called dielectric func-
tion, which explicitly breaks the symmetry. However, such
a simple pattern of symmetry breaking is strongly mo-
tivated by the latest investigation of the effective action
for the low energy QCD. Namely, using the non-Abelian
color dielectric model [14] one can derive, in the limit when
the color dielectric field condenses, a modified version of
the Faddeev–Niemi action [15]. The modification is given
by two functions which multiply the standard Faddeev–
Skyrme and kinetic terms. These functions depend only
on the unit vector field and explicitly break O(3) symme-
try. One can immediately ask about the fate of the toroidal
solutions in the theories with explicitly broken O(3) sym-
metry. Unfortunately, the obtained model is even more
complicated than the standard Faddeev–Niemi model and
no analytical solutions are known. In spite of that, this
problem can be investigated and solved in the case of the
toy model which is defined below.

To conclude, the question how the explicit breaking of
the global O(3) symmetry modifies the topological toroidal
solitons still deserves an answer. It is clear that the results
obtained here do not have to concern the modified versions
of the Faddeev–Niemi model. Nonetheless, some effects
seem to be quite general and might appear in some modified
models [15] as well. Thus, one can treat this paper as a
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first step to understand what happens with hopfions in the
modified Faddeev–Niemi theories.

2 The model

Let us startwith theAratyn–Ferreira–Zimermanmodel [16,
17]

L =
[
[n · (∂µn × ∂νn)]2

] 3
4 , (1)

where n is a three component unit vector living in Min-
kowski space-time.

In our work we generalize it to the following Lagran-
gian density:

L = σ (n)
[
[n · (∂µn × ∂νn)]2

] 3
4 . (2)

The symmetry breaking occurs due to the so-called dielec-
tric function σ, which depends on the unit field only. On the
other hand, the symmetric part can be written as a function
of the antisymmetric field tensor Hµν = n · (∂µn × ∂νn).
The unit field can be, in a standard way, expressed by a
complex field u, u∗:

n =
1

1 + |u|2 (u + u∗, −i(u − u∗), |u|2 − 1). (3)

Then we obtain

L = σ (u, u∗)
83/4

(1 + |u|2)3 (Kµ∂µu∗)
3
4 , (4)

where following [16] we define Kµ = (∂νu∗∂νu)∂µu −
(∂νu∂νu)∂µu∗. This object has two important properties:

Kµ∂µu = 0 and Im(Kµ∂µu∗) = 0. (5)

The pertinent equations of motion read

∂µ
3
2

[
σ

(1 + |u|2)3 (Kµ∂µu∗)− 1
4 Kµ

]

−(Kµ∂µu∗)
3
4

[
σ

(1 + |u|2)3
]′

u∗
= 0 (6)

and its complex conjugation. One can rewrite it in the more
compact form

∂µ

[
σ1/3

(1 + |u|2) (Kµ∂µu∗)− 1
4 Kµ

]
= 0, (7)

or
∂µKµ = 0, (8)

where

Kµ =
σ1/3

(1 + |u|2) (Kµ∂µu∗)− 1
4 Kµ. (9)

One can check that K fulfills the properties (5) only if the
dielectric function is a real function, σ = σ∗. After that

we are able to define an infinite family of the conserved
currents using the procedure proposed in [16]. Namely,

Jµ ≡ Kµ
∂G

∂u
− K∗

µ

∂G

∂u∗ , (10)

where G = G(u, u∗). Thus, the analyzed model is inte-
grable. Integrability is understood as the existence of an
infinite number of conserved currents [18,19]. It is straight-
forward to check that the integrability is observed for all
models where the symmetric part is any function of the
field tensor H2

µν . The case considered here has been chosen
to omit the Derick theorem for the non-existence of stable
solitons. Thus, we see that the integrability property is not
connected with the global O(3) symmetry. It is rather an
unexpected result. Usually, integrability (and solitons) are
observed in maximally symmetric situation.

Now, we show that, as in the standard theories with
solitons, integrability leads to the appearance of soliton so-
lutions.

Because of the fact that our aim is to find topologi-
cal toroidal solitons with the non-trivial Hopf number we
introduce the toroidal coordinates

x =
a

q
sinh η cos φ,

y =
a

q
sinh η sin φ,

z =
a

q
sin ξ, (11)

where q = cosh η−cos ξ anda > 0 is a constant of dimension
of length fixing the scale in the coordinates. Moreover, we
assume the following Ansatz for the field u [16]:

u(η, ξ, φ) ≡ f(η)ei(mξ+nφ), (12)

where m, n are integers.
Then the static equation of motion takes the form

∂η ln
σ2/3ff ′

(1 + f2)2
= − 2m2 sinh2 η − n2

m2 sinh2 η + n2

cosh η

sinh η
. (13)

It can be integrated and we find that

σ2/3ff ′

(1 + f2)2
=

k1

|m|3
sinh η(

n2−m2

m2 + cosh2 η
)3/2 , (14)

where k1 is a constant.
Finally, for any dielectric function,we obtain the general

solution given by the integral∫
σ2/3f

(1 + f2)2
df

=
−k1

|m|(m2 − n2)
cosh η(

n2−m2

m2 + cosh2 η
)1/2 − k2

2
,

where k2 is the second integration constant. Here, the case
|m| > |n| has been assumed.
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Before we specify the dielectric function and present
an exact solution let us consider the total energy of the
solution given by (15). In the case of our model, the total
energy reads

E ≡
∫

d3xT00 = 83/4
∫

d3xσ(u, u∗)
(Ki∂

iu∗)
3
4

(1 + |u|2)3 . (15)

Using (12) we get

Em,n = (2π)28 · 23/4 (16)

×
∫ ∞

0

dη sinh η

(1 + f2)3

(
m2 +

n2

sinh2 η

) 3
4

f
3
2 f ′ 3

2 σ(f).

Quite surprisingly this expression can be integrated for any
dielectric function. In fact, using (14) we are able to remove
σ from (16). Then

Em,n = (2π)28 ·23/4|k1| 3
2

∫ ∞

0

dη

sinh2 η

(
m2 +

n2

sinh2 η

)− 3
2

.

(17)
Finally, we obtain

Em,n = (2π)28 · 23/4 |k1| 3
2

|m||n|(|m| + |n|) . (18)

The total energy is given only in terms of the integer num-
bers m, n and the first integration constant k1. This ex-
pression strongly depends on the asymptotic value of the
function f , i.e. on the behavior of the unit vector field in
the origin and at spatial infinity.

In order to find the exact solution one has to choose
a particular form of the dielectric function and fix the
asymptotic conditions. Let us consider the following family
of functions labeled by the continuous parameter δ > − 3

2 :

σ(n) = (1 − n3)δα(δ). (19)

The new constant is chosen in the form

α(δ) =
1
2δ

(
3 + 2δ

3

) 3
2

.

One can notice that a very similar dielectric function ap-
pears in the non-Abelian color dielectric model in the limit
where the dielectric field condenses on some non-trivial
value [15].

This dielectric function can be expressed in terms of f
as follows:

σ = α(δ)
(

2
(1 + f2)

)δ

. (20)

Then the integral (15) can be evaluated and we find

1
1 + f2 (21)

=




 2k1

|m|(m2 − n2)
cosh η(

n2−m2

m2 + cosh2 η
)1/2 + k2






3
2δ+3

.

To calculate the unknown constants k1, k2 one has to fix
the asymptotic conditions. We take

n → (0, 0, 1) i.e. f → ∞ as η → 0 (22)

and
n → (0, 0, −1) i.e. f → 0 as η → ∞. (23)

Thus, after some simply algebra one can obtain

k1 =
1
2

(m2 − n2)
|m||n|

|n| − |m| (24)

and

k2 =
|m|

|m| − |n| . (25)

Inserting the constants in (21) we derive that

1
1 + f2 (26)

=


 1

|m| − |n|


|m| − |n| cosh η(

n2

m2 + sinh2 η
)1/2






3
2δ+3

.

Finally, the function f is found to be

f2 =
1(√

1 + m2

n2 sinh2 η − cosh η

) 3
2δ+3

×

(( |m|

|n| − 1
)√

n2

m2 + sinh2 η

) 3
2δ+3

−
(√

1 +
m2

n2 sinh2 η − cosh η

) 3
2δ+3


 . (27)

Knowing the value of the constants we can obtain the total
energy corresponding to the solution. It can be checked that

Em,n = (2π)24 · 21/4
√

|m||n|(|m| + |n|). (28)

Of course, a more complicated dielectric function will bring
us to a more complex solution. We would like to mention
only two functions which, in our opinion, lead to quite nice
solutions. Namely, for

σ1(n) =
a

(1 − n3)3
e−a 3

2

(
1+n3

1−n3

)
(29)

we get

f2 = − 1
a

ln


 1

|m| − |n|


|m| − |n| cosh η√

n2

m2 + sinh2 η




 ,

(30)
whereas for

σ2(n) =
8

(1 − n3)3


 sinh

(
1+n3

1−n3

)
cosh2

(
1+n3

1−n3

)



3
2

(31)
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one finds

f2 = arcosh




|m| − |n|(
|m| − |n| cosh η√

n2

m2 +sinh2 η

)

 . (32)

Both solutions correspond to the same constants k1, k2 and
possess an identical total energy given by (28).

Let us now calculate the Hopf index for the previously
obtained field configurations. This will be done for the
solution (27) but the presented procedure, based on [16],
can be easily repeated in the case of the solutions (30)
and (32) as well. We introduce two additional functions

g2
1 =

(( |m|
|n| − 1

)√
n2

m2 + sinh2 η

) 3
2δ+3

−
(√

1 +
m2

n2 sinh2 η − cosh η

) 3
2δ+3

(33)

and

g2
2 =

(√
1 +

m2

n2 sinh2 η − cosh η

) 3
2δ+3

. (34)

Then we can define functions Φi, i = 1 . . . 4,

Φ(1
2) =

(
g1√

g2
1 + g2

2

)
×
(

cos mξ

sin mξ

)
(35)

and

Φ(3
4) =

(
g2√

g2
1 + g2

2

)
×
(

cos nφ

− sin nφ

)
, (36)

which are connected with a primary unit vector field by
the relation ni = Z†σiZ, where

Z =
(

Z1

Z2

)
, Z† = (Z∗

1 , Z∗
2 ) (37)

and
Z1 = Φ1 + iΦ2, Z2 = Φ3 + iΦ4. (38)

The crucial point is to find an Abelian vector field which
defines the field tensor Hij = ∂iAj − ∂jAi. This can be
achieved for the following potential:

Ai =
i
2

(Z†∂iZ − ∂iZ
†Z). (39)

The Hopf index is defined in the standard way as

QH =
1

4π2

∫
d3xA · B, (40)

where the “magnetic” field is B = ∇×A. After integration
we find that

QH =
nm

2
[
(Φ2

1 + Φ2
2)

2 − (Φ2
3 + Φ2

4)
2]∞

0 = −mn. (41)

For non-zero m, n numbers the presented solutions possess
a non-trivial Hopf index. We would like to notice that
the famous Vakulenko–Kapitansky non-equality [20], also
in the case where O(3) symmetry is explicitly broken, is
fulfilled. In fact, we find that

Em,n ≥ (2π)24 · 2
3
4 |QH| 3

4 . (42)

One can see that we reproduce the result recently found
in the symmetric case [16].

3 Conclusions

In the present paper O(3) symmetry breaking models built
of the unit vector field leaving in the four dimensional Min-
kowski space-time have been investigated. In general, the
Lagrangian consists of two terms. The first one, globally
O(3) symmetric, depends on the H2

µν and is multiplied by a
dielectric function σ(n). This function ensures the explicit
symmetry breaking on the Lagrangian level.

Let us summarize the achieved results.
First of all, it has been proved that such models are in-

tegrable in this sense that an infinite number of conserved
currents can be constructed. As we have mentioned be-
fore, integrability of models with broken global symmetry
is rather an exceptional effect if we compare it with the
standard theories with solitons. Usually, integrability as
well as the appearance of solitons requires the maximal
possible symmetry.

Secondly, the special case where the O(3) symmetric
term is chosen in the form to circumvent the famous Derick
scaling argument for the non-existence of stable solitons
has been analyzed in detail. We have found a family of
toroidal solutions (in general given by the integral), la-
beled by two integer numbers m, n. The total energy has
also been found. It is given by these numbers and the
first integration constant i.e. by the asymptotic value of
the field. For some particular dielectric functions the ex-
act solutions have been obtained. For the most interesting
case where the dielectric function has a form motivated by
a non-Abelian color dielectric model [15], the generalized
Aratyn–Ferreira–Zimerman solutions have been presented.
We have also proved that these field configurations pos-
sess a non-trivial topology and can be classified by means
of the Hopf index. Quite intriguingly, the energy–charge
inequality takes an identical form as in the symmetric case.

Themain result of ourwork is that toroidalHopf solitons
can appear in the model with broken global O(3) symmetry.
It should be stressed that the O(3) global symmetry is not
essential for the existence of hopfions.

It is also worth to notice that the pattern of symmetry
breaking analyzed here (i.e. via the dielectric function) is a
very special one. The breaking of the symmetry is reflected
merely in the shape of the soliton. In spite of the fact that
the form of the soliton solutions strongly depends on the
dielectric function and can be really complicated, they all
lead to the same total energy and Hopf index as in the
symmetric theory. Due to that ourmodel can be understood
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as the model where the O(3) symmetry breaking occurs in
the minimal way.

The existence of topological toroidal solutions in the
model with explicit broken symmetry is very encouraging
in the context of the effective model for the low energy
gluodynamics. As we have mentioned before, there are some
numerical [13] as well as theoretical papers [11,12,15] which
suggest that such an effective model should break global
O(3) symmetry. In fact a model with symmetry breaking
dielectric function has been recently proposed [15]. Because
of the fact that symmetry breaking in this model occurs in
the same manner as considered here one can suppose that
also for the model of [15] the influences of the breaking
terms may be insignificant. It would be very interesting
to investigate it more precisely. We plan to address this
problem in our proceeding paper.
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